\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Let \mathcal{H} be a Hilbert space and $\left\{x_{k}\right\} \in \mathcal{H}$ be an orthonormal system. Prove that Parseval's identity holds for $\left\{x_{k}\right\}$ if and only if $\left\{x_{k}\right\}$ is complete.
2. Let X be a separable Hilbert space with ON basis $\left\{x_{k}\right\}$. Let $A: X \rightarrow X$ be a bounded linear operator. Prove that

$$
\lim _{k \rightarrow \infty}\left|\left\langle A x, x_{k}\right\rangle\right|=0
$$

3. Let \mathbb{D} be the unit disk in \mathbb{C}. Define the following space

$$
H^{2}(\mathbb{D})=\{f(z) \text { is holomorphic on } \mathbb{D}:\|f\|<\infty\}
$$

where

$$
\|f\|^{2}=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta
$$

and $z=r e^{i \theta}$. Prove that $H^{2}(\mathbb{D})$ is a Banach space. Be sure to show $\|\cdot\|$ actually defines a norm. Is it a Hilbert space?
4. Let $M_{m n}(\mathbb{C})$ be the set of all $m \times n$ matrices with complex entries. Define the map $\langle\cdot, \cdot\rangle: M_{m n}(\mathbb{C}) \times M_{m n}(\mathbb{C}) \rightarrow \mathbb{C}$ by $\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)$. Prove that $\langle\cdot, \cdot\rangle$ defines an inner product on $M_{m n}(\mathbb{C})$. Moreover prove that $M_{m n}(\mathbb{C})$ is a Hilbert space with this inner product.
5. Let $f \in L^{2}[0,1]$ and define the following operator $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ by

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

Prove that T is a bounded operator and $\|T\|=2 / \pi$. Compute Ker T and Ran T^{*}. Is is true that Ran $T^{*} \neq(\operatorname{Ker} T)^{\perp}$?
6. Let $f \in L^{2}[a, b]$ and $g \in L^{\infty}[a, b]$ and define the following operator $M_{g}: L^{2}[a, b] \rightarrow L^{2}[a, b]$ by

$$
\left(M_{g} f\right)(x)=g(x) f(x)
$$

Prove that M_{g} is a bounded operator and $\left\|M_{g}\right\|=\|g\|_{\infty}$.
7. Let $x \in \ell^{2}(\mathbb{N})$. Define the following operator $A: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ by:

$$
A x=\left\{k^{2}\left(x_{k+1}-x_{k}\right)\right\}_{k=1}^{\infty}
$$

1.) Show that A is an unbounded operator and compute $\operatorname{Ker} A$.
2.) If $x_{1}=0$, compute A^{-1}.
3.) What condition is needed to guarantee that A^{-1} is bounded.
8. Define the following operator on $L^{2}[0,1]$:

$$
A=i \frac{d}{d x}
$$

Show that A is an unbounded operator and compute Ker A. Be sure to have a proper domain for A.
9. Let X be a normed vector space and $T: X \rightarrow X$ be a bounded linear operator such that $\|T\|<1$. Prove that $I-T$ is invertible and that

$$
(I-T)^{-1}=\sum_{k=0}^{\infty} T^{k} \text { and }\left\|(I-T)^{-1}\right\| \leq \frac{1}{1-\|T\|}
$$

